54 research outputs found

    Transport timescales and tracer properties in the extratropical UTLS

    Get PDF
    A comprehensive evaluation of seasonal backward trajectories initialized in the Northern Hemisphere lowermost stratosphere (LMS) has been performed to investigate the origin of air parcels and the main mechanisms determining characteristic structures in H2O and CO within the LMS. In particular we explain the fundamental role of the transit time since last tropopause crossing (tTST) for the chemical structure of the LMS as well as the feature of the extra-tropical tropopause transition layer (ExTL) as identified from CO profiles. The distribution of H2O in the background LMS above Θ=320 K and 340 K in northern winter and summer, respectively, is found to be governed mainly by the saturation mixing ratio, which in turn is determined by the Lagrangian Cold Point (LCP) encountered by each trajectory. Most of the backward trajectories from this region in the LMS experienced their LCP in the tropics and sub-tropics. The transit time since crossing the tropopause from the troposphere to the stratosphere (tTST) is independent of the H2O value of the air parcel. TST often occurs 20 days after trajectories have encountered their LCP. CO, on the other hand, depends strongly on tTST due to its finite lifetime. The ExTL as identified from CO measurements is then explained as a layer of air just above the tropopause, which on average encountered TST fairly recently

    Seasonal and regional variations of long-term changes in upper-tropospheric jets from reanalyses

    Get PDF
    Long-term changes in upper-tropospheric jet latitude, altitude, and strength are assessed using five modern reanalyses: MERRA, MERRA-2, ERA-Interim, JRA-55, and NCEP CFSR. Changes are computed from jet locations evaluated daily at each longitude to analyze regional and seasonal variations. The changes in subtropical and polar (eddy driven) jets are evaluated separately. Good agreement among the reanalyses in many regions and seasons provides confidence in the robustness of the diagnosed trends. Jet shifts show strong regional and seasonal variations, resulting in changes that are not robust in zonal or annual means. Robust changes in the subtropical jet indicate tropical widening over Africa except during Northern Hemisphere (NH) spring, and tropical narrowing over the eastern Pacific in NH winter. The Southern Hemisphere (SH) polar jet shows a robust poleward shift, while the NH polar jet shifts equatorward in most regions/seasons. Both subtropical and polar jet altitudes typically increase; these changes are more robust in theNHthan in the SH. Subtropical jet wind speeds have generally increased in winter and decreased in summer, while polar jet wind speeds have weakened (strengthened) over Africa and eastern Asia (elsewhere) during winter in both hemispheres. The Asian monsoon has increased in area and appears to have shifted slightly westward toward Africa. Our results highlight the importance of understanding regional and seasonal variations when quantifying long-term changes in jet locations, the mechanisms for those changes, and their potential human impacts. Comparison of multiple reanalyses is a valuable tool for assessing the robustness of jet changes

    Is global ozone recovering?

    Get PDF
    Thanks to the Montreal Protocol, the stratospheric concentrations of ozone-depleting chlorine and bromine have been declining since their peak in the late 1990s. Global ozone has responded: The substantial ozone decline observed since the 1960s ended in the late 1990s. Since then, ozone levels have remained low, but have not declined further. Now general ozone increases and a slow recovery of the ozone layer is expected. The clearest signs of increasing ozone, so far, are seen in the upper stratosphere and for total ozone columns above Antarctica in spring. These two regions had also seen the largest ozone depletions in the past. Total column ozone at most latitudes, however, does not show clear increases yet. This is not unexpected, because the removal of chlorine and bromine from the stratosphere is three to four times slower than their previous increase. Detecting significant increases in total column ozone, therefore, will require much more time than the detection of its previous decline. The search is complicated by variations in ozone that are not caused by declining chlorine or bromine, but are due, e.g., to transport changes in the global Brewer–Dobson circulation. Also, very accurate observations are necessary to detect the expected small increases. Nevertheless, observations and model simulations indicate that the stratosphere is on the path to ozone recovery. This recovery process will take many decades. As chlorine and bromine decline, other factors will become more important. These include climate change and its effects on stratospheric temperatures, changes in the Brewer–Dobson circulation (both due to increasing CO2), increasing emissions of trace gases like N2O, CH4, possibly large future increases of short-lived substances (like CCl2H2) from both natural and anthropogenic sources, and changes in tropospheric ozone

    In-situ comparison of the NOy instruments flown in MOZAIC and SPURT

    Get PDF
    Two aircraft instruments for the measurement of total odd nitrogen (NOy) were compared side by side aboard a Learjet A35 in April 2003 during a campaign of the AFO2000 project SPURT (Spurengastransport in der Tropopausenregion). The instruments albeit employing the same measurement principle (gold converter and chemiluminescence) had different inlet configurations. The ECO-Physics instrument operated by ETH-ZĂźrich in SPURT had the gold converter mounted outside the aircraft, whereas the instrument operated by FZ-JĂźlich in the European project MOZAIC III (Measurements of ozone, water vapour, carbon monoxide and nitrogen oxides aboard Airbus A340 in-service aircraft) employed a Rosemount probe with 80 cm of FEP-tubing connecting the inlet to the gold converter. The NOy concentrations during the flight ranged between 0.3 and 3 ppb. The two data sets were compared in a blind fashion and each team followed its normal operating procedures. On average, the measurements agreed within 7%, i.e. within the combined uncertainty of the two instruments. This puts an upper limit on potential losses of HNO3 in the Rosemount inlet of the MOZAIC instrument. Larger transient deviations were observed during periods after calibrations and when the aircraft entered the stratosphere. The time lag of the MOZAIC instrument observed in these instances is in accordance with the time constant of the MOZAIC inlet line determined in the laboratory for HNO3

    Tropical water vapour in the lower stratosphere and its relationship to tropical/extratropical dynamical processes in ERA5

    Get PDF
    Stratospheric water vapour (SWV), in spite of its low concentration in the stratosphere as compared to the troposphere, contributes significantly to the surface energy budget and can have an influence on the surface climate. This study investigates the dynamical processes that determine SWV on interannual to decadal time‐scales. First, we evaluate two SWV reanalysis products and show that SWV is better represented in a new‐generation reanalysis product, ERA5, than in its predecessor, ERA‐Interim. In particular, it is shown that SWV in ERA5 is highly consistent with observational data obtained from the SPARC Data Initiative Multi‐Instrument Mean (SDI MIM). Second, we investigate the variability of tropical SWV and its relationship to dynamical stratospheric variables. The analyses show that the interannual variability in the tropical lower‐stratospheric water vapour is closely linked to the tropical Quasi‐Biennial Oscillation (QBO). When westerlies occupy the middle stratosphere and easterlies the lower stratosphere, a decrease is observed in lower‐stratospheric water vapour due to a colder tropical tropopause and a QBO‐induced enhanced residual circulation. On decadal time‐scales, the composite analysis of the boreal winter in two typical periods shows that less SWV is related to a warm anomaly in the North Atlantic sea‐surface temperature, which leads to stronger upward propagation of planetary wave activity at high latitudes, a weaker polar vortex and an enhanced residual circulation. The opposite occurs during periods with higher concentrations of SWV

    Inter-comparison of stratospheric mean-meridional circulation and eddy mixing among six reanalysis data sets

    Get PDF
    The stratospheric mean-meridional circulation (MMC) and eddy mixing are compared among six meteorological reanalysis data sets: NCEP-NCAR, NCEP-CFSR, ERA-40, ERA-Interim, JRA-25, and JRA-55 for the period 1979–2012. The reanalysis data sets produced using advanced systems (i.e., NCEP-CFSR, ERA-Interim, and JRA-55) generally reveal a weaker MMC in the Northern Hemisphere (NH) compared with those produced using older systems (i.e., NCEP/NCAR, ERA-40, and JRA-25). The mean mixing strength differs largely among the data products. In the NH lower stratosphere, the contribution of planetary-scale mixing is larger in the new data sets than in the old data sets, whereas that of small-scale mixing is weaker in the new data sets. Conventional data assimilation techniques introduce analysis increments without maintaining physical balance, which may have caused an overly strong MMC and spurious small-scale eddies in the old data sets. At the NH mid-latitudes, only ERA-Interim reveals a weakening MMC trend in the deep branch of the Brewer–Dobson circulation (BDC). The relative importance of the eddy mixing compared with the mean-meridional transport in the subtropical lower stratosphere shows increasing trends in ERA-Interim and JRA-55; this together with the weakened MMC in the deep branch may imply an increasing age-of-air (AoA) in the NH middle stratosphere in ERA-Interim. Overall, discrepancies between the different variables and trends therein as derived from the different reanalyses are still relatively large, suggesting that more investments in these products are needed in order to obtain a consolidated picture of observed changes in the BDC and the mechanisms that drive them

    Historical tropospheric and stratospheric ozone radiative forcing using the CMIP6 database

    Get PDF
    We calculate ozone radiative forcing (RF) and stratospheric temperature adjustments for the period 1850-2014 using the newly availableCMIP6 ozone dataset. The CMIP6 total ozone RF (1850s-2000s) is 0.28+/-0.17 W m-2 (which is 80% higher than our CMIP5 estimation), and 0.30+/-0.17 W m-2 out to the present day (2014). The total ozone RF grows rapidly until the 1970s, slows towards the 2000s, and shows a renewed growth thereafter. Since the 1990s the shortwave RF exceeds the longwave RF. Global stratospheric ozone RF is positive between 1930 and 1970 and then turns negative, but remains positive in the Northern Hemisphere throughout. Derived stratospheric temperature changes show a localized cooling in the subtropical lower stratosphere due to tropospheric ozone increases, and cooling in the upper stratosphere due to ozone depletion by more than 1K already prior to the satellite era (1980), and by more than 2K out to the present day(2014)

    Atmospheric science: the self-cleansing ability of prehistoric air

    Get PDF
    Isotopic data from an ice core have been used to estimate atmospheric oxidant levels during past climate transitions — pointing to relatively unexplored climate feedbacks as drivers of atmospheric composition
    • …
    corecore